3.23.97 \(\int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^7} \, dx\) [2297]

Optimal. Leaf size=209 \[ -\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}+\frac {1057139 \sqrt {1-2 x} \sqrt {3+5 x}}{7112448 (2+3 x)^2}+\frac {106751933 \sqrt {1-2 x} \sqrt {3+5 x}}{99574272 (2+3 x)}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}-\frac {15036307 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{1229312 \sqrt {7}} \]

[Out]

-15036307/8605184*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)-59/1260*(3+5*x)^(3/2)*(1-2*x)^(1/2)/
(2+3*x)^5-1/18*(3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^6-6533/211680*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^4+47279/1
270080*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^3+1057139/7112448*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^2+106751933/9
9574272*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {99, 154, 156, 12, 95, 210} \begin {gather*} -\frac {15036307 \text {ArcTan}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{1229312 \sqrt {7}}-\frac {\sqrt {1-2 x} (5 x+3)^{5/2}}{18 (3 x+2)^6}-\frac {59 \sqrt {1-2 x} (5 x+3)^{3/2}}{1260 (3 x+2)^5}+\frac {106751933 \sqrt {1-2 x} \sqrt {5 x+3}}{99574272 (3 x+2)}+\frac {1057139 \sqrt {1-2 x} \sqrt {5 x+3}}{7112448 (3 x+2)^2}+\frac {47279 \sqrt {1-2 x} \sqrt {5 x+3}}{1270080 (3 x+2)^3}-\frac {6533 \sqrt {1-2 x} \sqrt {5 x+3}}{211680 (3 x+2)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^7,x]

[Out]

(-6533*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(211680*(2 + 3*x)^4) + (47279*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(1270080*(2 + 3
*x)^3) + (1057139*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(7112448*(2 + 3*x)^2) + (106751933*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])
/(99574272*(2 + 3*x)) - (59*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(1260*(2 + 3*x)^5) - (Sqrt[1 - 2*x]*(3 + 5*x)^(5/2)
)/(18*(2 + 3*x)^6) - (15036307*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(1229312*Sqrt[7])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && ILtQ[m, -1] && GtQ[n, 0]

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^7} \, dx &=-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {1}{18} \int \frac {\left (\frac {19}{2}-30 x\right ) (3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^6} \, dx\\ &=-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {\int \frac {\left (-\frac {387}{4}-2595 x\right ) \sqrt {3+5 x}}{\sqrt {1-2 x} (2+3 x)^5} \, dx}{1890}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {\int \frac {-\frac {822687}{8}-\frac {432615 x}{2}}{\sqrt {1-2 x} (2+3 x)^4 \sqrt {3+5 x}} \, dx}{158760}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {\int \frac {\frac {10523625}{16}-\frac {4964295 x}{2}}{\sqrt {1-2 x} (2+3 x)^3 \sqrt {3+5 x}} \, dx}{3333960}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}+\frac {1057139 \sqrt {1-2 x} \sqrt {3+5 x}}{7112448 (2+3 x)^2}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {\int \frac {\frac {2256323055}{32}-\frac {554997975 x}{8}}{\sqrt {1-2 x} (2+3 x)^2 \sqrt {3+5 x}} \, dx}{46675440}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}+\frac {1057139 \sqrt {1-2 x} \sqrt {3+5 x}}{7112448 (2+3 x)^2}+\frac {106751933 \sqrt {1-2 x} \sqrt {3+5 x}}{99574272 (2+3 x)}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {\int \frac {127883791035}{64 \sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx}{326728080}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}+\frac {1057139 \sqrt {1-2 x} \sqrt {3+5 x}}{7112448 (2+3 x)^2}+\frac {106751933 \sqrt {1-2 x} \sqrt {3+5 x}}{99574272 (2+3 x)}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {15036307 \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx}{2458624}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}+\frac {1057139 \sqrt {1-2 x} \sqrt {3+5 x}}{7112448 (2+3 x)^2}+\frac {106751933 \sqrt {1-2 x} \sqrt {3+5 x}}{99574272 (2+3 x)}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}+\frac {15036307 \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )}{1229312}\\ &=-\frac {6533 \sqrt {1-2 x} \sqrt {3+5 x}}{211680 (2+3 x)^4}+\frac {47279 \sqrt {1-2 x} \sqrt {3+5 x}}{1270080 (2+3 x)^3}+\frac {1057139 \sqrt {1-2 x} \sqrt {3+5 x}}{7112448 (2+3 x)^2}+\frac {106751933 \sqrt {1-2 x} \sqrt {3+5 x}}{99574272 (2+3 x)}-\frac {59 \sqrt {1-2 x} (3+5 x)^{3/2}}{1260 (2+3 x)^5}-\frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{18 (2+3 x)^6}-\frac {15036307 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{1229312 \sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 89, normalized size = 0.43 \begin {gather*} \frac {\frac {7 \sqrt {1-2 x} \sqrt {3+5 x} \left (665270208+4978384240 x+14818971424 x^2+21960917808 x^3+16234789140 x^4+4803836985 x^5\right )}{(2+3 x)^6}-225544605 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{129077760} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^7,x]

[Out]

((7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(665270208 + 4978384240*x + 14818971424*x^2 + 21960917808*x^3 + 16234789140*x^
4 + 4803836985*x^5))/(2 + 3*x)^6 - 225544605*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/129077760

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(345\) vs. \(2(164)=328\).
time = 0.14, size = 346, normalized size = 1.66

method result size
risch \(-\frac {\sqrt {3+5 x}\, \left (-1+2 x \right ) \left (4803836985 x^{5}+16234789140 x^{4}+21960917808 x^{3}+14818971424 x^{2}+4978384240 x +665270208\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{18439680 \left (2+3 x \right )^{6} \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right )}\, \sqrt {1-2 x}}+\frac {15036307 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{17210368 \sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(139\)
default \(\frac {\sqrt {3+5 x}\, \sqrt {1-2 x}\, \left (164422017045 \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) \sqrt {7}\, x^{6}+657688068180 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{5}+1096146780300 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{4}+67253717790 x^{5} \sqrt {-10 x^{2}-x +3}+974352693600 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{3}+227287047960 x^{4} \sqrt {-10 x^{2}-x +3}+487176346800 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+307452849312 x^{3} \sqrt {-10 x^{2}-x +3}+129913692480 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +207465599936 x^{2} \sqrt {-10 x^{2}-x +3}+14434854720 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+69697379360 x \sqrt {-10 x^{2}-x +3}+9313782912 \sqrt {-10 x^{2}-x +3}\right )}{258155520 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )^{6}}\) \(346\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^7,x,method=_RETURNVERBOSE)

[Out]

1/258155520*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(164422017045*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*7^(1/
2)*x^6+657688068180*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^5+1096146780300*7^(1/2)*arcta
n(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^4+67253717790*x^5*(-10*x^2-x+3)^(1/2)+974352693600*7^(1/2)*arc
tan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+227287047960*x^4*(-10*x^2-x+3)^(1/2)+487176346800*7^(1/2)*
arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+307452849312*x^3*(-10*x^2-x+3)^(1/2)+129913692480*7^(1/
2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x+207465599936*x^2*(-10*x^2-x+3)^(1/2)+14434854720*7^(1/
2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+69697379360*x*(-10*x^2-x+3)^(1/2)+9313782912*(-10*x^2-x+
3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^6

________________________________________________________________________________________

Maxima [A]
time = 0.56, size = 244, normalized size = 1.17 \begin {gather*} \frac {15036307}{17210368} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {621335}{921984} \, \sqrt {-10 \, x^{2} - x + 3} + \frac {{\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{126 \, {\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )}} - \frac {169 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{2940 \, {\left (243 \, x^{5} + 810 \, x^{4} + 1080 \, x^{3} + 720 \, x^{2} + 240 \, x + 32\right )}} + \frac {547 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{23520 \, {\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} + \frac {31055 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{197568 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} + \frac {372801 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{614656 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac {4597879 \, \sqrt {-10 \, x^{2} - x + 3}}{3687936 \, {\left (3 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^7,x, algorithm="maxima")

[Out]

15036307/17210368*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 621335/921984*sqrt(-10*x^2 - x +
 3) + 1/126*(-10*x^2 - x + 3)^(3/2)/(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64) - 169/2
940*(-10*x^2 - x + 3)^(3/2)/(243*x^5 + 810*x^4 + 1080*x^3 + 720*x^2 + 240*x + 32) + 547/23520*(-10*x^2 - x + 3
)^(3/2)/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16) + 31055/197568*(-10*x^2 - x + 3)^(3/2)/(27*x^3 + 54*x^2 + 36*
x + 8) + 372801/614656*(-10*x^2 - x + 3)^(3/2)/(9*x^2 + 12*x + 4) - 4597879/3687936*sqrt(-10*x^2 - x + 3)/(3*x
 + 2)

________________________________________________________________________________________

Fricas [A]
time = 0.62, size = 146, normalized size = 0.70 \begin {gather*} -\frac {225544605 \, \sqrt {7} {\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (4803836985 \, x^{5} + 16234789140 \, x^{4} + 21960917808 \, x^{3} + 14818971424 \, x^{2} + 4978384240 \, x + 665270208\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{258155520 \, {\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^7,x, algorithm="fricas")

[Out]

-1/258155520*(225544605*sqrt(7)*(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64)*arctan(1/14
*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(4803836985*x^5 + 16234789140*x^4 + 2
1960917808*x^3 + 14818971424*x^2 + 4978384240*x + 665270208)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(729*x^6 + 2916*x^5
 + 4860*x^4 + 4320*x^3 + 2160*x^2 + 576*x + 64)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(5/2)*(1-2*x)**(1/2)/(2+3*x)**7,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 484 vs. \(2 (164) = 328\).
time = 2.07, size = 484, normalized size = 2.32 \begin {gather*} \frac {15036307}{172103680} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {14641 \, \sqrt {10} {\left (3081 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{11} + 4888520 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{9} + 3188465280 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{7} - 599903001600 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{5} - 103716175360000 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} - \frac {5302514380800000 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} + \frac {21210057523200000 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{1843968 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^7,x, algorithm="giac")

[Out]

15036307/172103680*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) -
sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 14641/1843968*sqrt(10)*(3081*((sqrt(2)*sqr
t(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^11 + 4888520*((
sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^9 +
3188465280*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sq
rt(22)))^7 - 599903001600*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(
-10*x + 5) - sqrt(22)))^5 - 103716175360000*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x +
 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 - 5302514380800000*(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x +
 3) + 21210057523200000*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(
22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^6

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {1-2\,x}\,{\left (5\,x+3\right )}^{5/2}}{{\left (3\,x+2\right )}^7} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^7,x)

[Out]

int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^7, x)

________________________________________________________________________________________